Differential role of heparan sulfate proteoglycans on aggregated LDL uptake in human vascular smooth muscle cells and mouse embryonic fibroblasts.
نویسندگان
چکیده
OBJECTIVE Low density lipoprotein (LDL) receptor-related protein (LRP) binds and internalizes aggregated LDL (agLDL) in human vascular smooth muscle cells (VSMCs). To analyze the contribution of proteoglycans (PGs) to agLDL uptake in human VSMCs, in wild-type mouse embryonic fibroblasts (MEF line), and in LRP-deficient mouse embryonic fibroblasts (PEA13 line). METHODS AND RESULTS PGs in the medium and cellular and extracellular matrix have been isolated by metabolic radiolabeling with [35S]Na2SO4 and characterized by selective digestion with heparinase I and III (4 U/mL each) and chondroitinase ABC (2 U/mL). To examine the contribution of PGs and LRPs to agLDL internalization, nonexpressing and LRP-expressing cells, treated or not with polysaccharidase, were incubated with agLDL (25, 50, and 100 micro g/mL) for 18 hours. In human VSMCs, agLDL was unable to induce cholesteryl ester (CE) accumulation in antisense LRP-oligodeoxynucleotide-treated cells, and heparan sulfate (HS)-PG depletion leads to a reduction of the CE accumulation. In mouse fibroblasts, PEA13 compared with MEF showed lower, but still considerable, CE accumulation, and HS-PG depletion almost completely inhibited CE accumulation. CONCLUSIONS In MEF, HS-PGs can function alone as receptors that bind and internalize agLDL in the absence of LRP, but in human VSMCs, although HS-PGs facilitate agLDL binding to the cells, LRP is essential for agLDL internalization.
منابع مشابه
Vascular cell-derived heparan sulfate shows coupled inhibition of basic fibroblast growth factor binding and mitogenesis in vascular smooth muscle cells.
Basic fibroblast growth factor (bFGF) has been previously shown to be mitogenic for vascular smooth muscle cells (VSMCs) in vivo, but only after vascular injury. We show in the present study that the regulation of bFGF-stimulated VSMC proliferation, by vascular cell-secreted heparin-like compounds, correlates with inhibition of bFGF binding to cell-associated heparin sulfate proteoglycans. The ...
متن کاملHeparan sulfate proteoglycans function as receptors for fibroblast growth factor-2 activation of extracellular signal-regulated kinases 1 and 2.
Fibroblast growth factor-2 (FGF2) activates the extracellular signal-regulated kinases 1 and 2 (ERK1/2) through its specific receptors. Interaction of FGF2 with cell-surface heparan sulfate proteoglycans has also been suggested to induce intracellular signals. Thus, we investigated whether FGF2 can stimulate ERK1/2 activation through heparan sulfate proteoglycans using mechanisms that do not de...
متن کاملHeparan Sulfate Proteoglycans Function as Receptors for Fibroblast Growth Factor-2 Activation of Extracellular Signal–Regulated Kinases
Fibroblast growth factor-2 (FGF2) activates the extracellular signal–regulated kinases 1 and 2 (ERK1/2) through its specific receptors. Interaction of FGF2 with cell-surface heparan sulfate proteoglycans has also been suggested to induce intracellular signals. Thus, we investigated whether FGF2 can stimulate ERK1/2 activation through heparan sulfate proteoglycans using mechanisms that do not de...
متن کاملVascular-directed tissue factor pathway inhibitor overexpression regulates plasma cholesterol and reduces atherosclerotic plaque development.
RATIONALE Tissue factor pathway inhibitor (TFPI) is a potent regulator of the tissue factor pathway and is found in plasma in association with lipoproteins. OBJECTIVE To determine the role of TFPI in the development of atherosclerosis, we bred mice which overexpress TFPI into the apolipoprotein E-deficient (apoE(-/-)) background. METHODS AND RESULTS On a high-fat diet, smooth muscle 22alpha...
متن کاملShear Stress Modulation of Smooth Muscle Cell Marker Genes in 2-D and 3-D Depends on Mechanotransduction by Heparan Sulfate Proteoglycans and ERK1/2
BACKGROUND During vascular injury, vascular smooth muscle cells (SMCs) and fibroblasts/myofibroblasts (FBs/MFBs) are exposed to altered luminal blood flow or transmural interstitial flow. We investigate the effects of these two types of fluid flows on the phenotypes of SMCs and MFBs and the underlying mechanotransduction mechanisms. METHODOLOGY/PRINCIPAL FINDINGS Exposure to 8 dyn/cm(2) lamin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 22 11 شماره
صفحات -
تاریخ انتشار 2002